Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates.
نویسندگان
چکیده
Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. In this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one-half and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.
منابع مشابه
Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملDipole-dipole interaction between molecules mediated by a chain of silver nanoparticles.
We study the dipole-dipole coupling between two fluorescent molecules in the presence of a chain of metallic nanoparticles. We analyze the spectral behavior of the coupling strength and its dependence on the molecular orientation. Our results show that for certain resonant wavelengths the coupling strength between the molecules is greatly enhanced and is strongly polarization sensitive. We also...
متن کاملNovel helical assembly of a Pt(II) phenylbipyridine complex directed by metal-metal interaction and aggregation-induced circularly polarized emission.
Pt(ii) phenylbipyridine complexes possessing bis(phenylisoxazolyl)phenylacetylene ligands self-assembled to form stacked aggregates via Pt-Pt, π-π stacking, and dipole-dipole interactions. The assembled structures were influenced by the solvent properties. Non-helical assemblies found in chloroform displayed metal-metal-to-ligand charge transfer absorption and emission, whereas helical assembli...
متن کاملSize–dependent Correlation Effects in Ultrafast Optical Dynamics of Metal Nanoparticles
We study the role of collective surface excitations in the electron relaxation in small metal particles. We show that the dynamically screened electron– electron interaction in a nanoparticle contains a size–dependent correction induced by the surface. This leads to new channels of quasiparticle scattering accompanied by the emission of surface collective excitations. We calculate the energy an...
متن کاملDipole formation at organic/metal interfaces with pre-deposited and post-deposited metal
In organic electronic devices, the interfacial dipole at organic/metal interfaces is critical in determining the carrier injection or extraction that limits the performance of the device. A novel technique to enable the direct measurement of underburied dipoles is developed and demonstrated. By tilting the shadow mask by a small angle, metal atoms diffuse into the opening slit to form an ultrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 38 شماره
صفحات -
تاریخ انتشار 2017